Reactions of Sixteen-electron Bis(alkyne)-molybdenum and -tungsten Complexes with Phosphines and Isocyanides; Molecular and Crystal Structure of the Insertion Product $\left[\mathrm{MoCF}_{3}\left(\mathrm{Bu}^{t} \mathrm{NC}^{\mathrm{C}}\left\{\left(\mathrm{CF}_{3}\right)_{4} \mathrm{C}_{5} \mathrm{NBu}^{\mathrm{t}}\right\}\right.\right.$ ($\eta-\mathrm{C}_{5} \mathrm{H}_{5}$)]

By Jack L. Davidson, Michael Green, (the late) Jeffrey Z. Nyathi, F. Gordon A. Stone, * and Alan J.Welch, Department of Inorganic Chemistry, The University, Bristol BS8 1 TS
Diphenylacetylene reacts thermally, and but-2-yne on u.v. irradiation, with $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ to give respectively, $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)(\mathrm{CO})\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)(\mathrm{CO})\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. In contrast, the corresponding reaction (u.v.) of hexafluorobut-2-yne or dimethyl acetylenedicarboxylate affords [$\mathrm{Mo}\left(\mathrm{CF}_{3}\right)\left(\eta^{2}-\right.$ $\left.\left.\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)\left\{\eta^{2}-\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right\}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. Treatment of $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)(\mathrm{CO})\left(\eta^{2}-\mathrm{MeC} 2 \mathrm{Me}\right)(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with $\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ gives $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. The co-ordinatively unsaturated bis(acetylene) complexes, and also $\left[\mathrm{MCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{M}=\mathrm{Mo}\right.$ or W). react with PMe_{3} or PPh_{3} to give the 18 -electron species $\left[M X\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}\right)_{2} \mathrm{~L}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ ($M=$ Mo or W : $X=\mathrm{CF}_{3}$ or Cl ; $\mathrm{L}=\mathrm{PMe}_{3}$ or PPh_{3}). These complexes exist in solution as equilibrating cis and trans isomers. An analogous reaction of $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)\right.$ -$\left.\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ or $\left[\mathrm{WCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with ButNC affords initially isostructural $1: 1$ adducts: however, excess of isocyanide gives cyclopentadienimine complexes. A single-crystal X-ray diffraction study has established the structure of $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}\right)\left\{\left(\mathrm{CF}_{3}\right)_{4} \mathrm{C}_{5} \mathrm{NBut}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. Crystals are monoclinic, space group $P 2_{1} / a$ with $a=17.452(6), b=35.410(18)$, and $c=9.182(4) \mathcal{A}, \beta=95.91(3)^{\circ}, Z=8$. The structure has been determined from the analysis of 7900 data with $/ \geqslant 1.0 \sigma$ collected to $2 \theta 55.0^{\circ}$ (Mo- K_{α} radiation) on a four-circle diffractometer, and refined by least squares to R 0.127. In contrast, excess of isocyanide reacts with $\left[\mathrm{MoCl}\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and with $\left[\mathrm{MCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{M}=\mathrm{Mo}$ or W$)$ to give respectively, the cationic species $\left[\mathrm{M}(\mathrm{CNBut})_{3}\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}\left(\mathrm{M}=\mathrm{Mo}\right.$ or $\mathrm{W} ; \mathrm{R}=\mathrm{Ph}$ or $\left.\mathrm{CF}_{3}\right)$ isolated as Cl^{-}or $\left[\mathrm{PF}_{6}\right]-$ salts. Oxygen reacts with $\left[\mathrm{MX}(\mathrm{CO})\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}\right)\left(r_{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{M}=\mathrm{Mo}\right.$ or $\mathrm{W}: \mathrm{X}=\mathrm{Cl}^{2}$ or $\mathrm{CF}_{3}: \mathrm{R}=\mathrm{Ph}$ or CF_{3}) to give the oxo-complexes $\left[\mathrm{MoX}(\mathrm{O})\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$].

Previous studies have shown ${ }^{1}$ that the organothiocomplexes $\left[\mathrm{M}(\mathrm{SR})(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{M}=\mathrm{Mo}$ or $\mathrm{W} ; \mathrm{R}=$ CF_{3} or $\mathrm{C}_{6} \mathrm{~F}_{5}$) react with acetylenes to give the formally 16 -electron monocarbonyl species $\left[\mathrm{M}(\mathrm{SR})(\mathrm{CO})\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}\right)\right.$ -$\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$], whereas related reactions with the halogenocomplexes $\left[\mathrm{MX}(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{M}=\mathrm{Mo}$ or $\mathrm{W} ; \mathrm{X}=\mathrm{Cl}$, Br , or I) afforded the bis(acetylene) species [MX(η^{2-} $\left.\left.\mathrm{RC}_{2} \mathrm{R}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, together with cyclopentadienone and duroquinone complexes. ${ }^{2}$ In order to extend the scope of these syntheses we have investigated reactions of acetylenes with the (trifluoroacetyl)molybdenum com-
${ }^{1}$ P. S. Braterman, J. L. Davidson, and D. W. A. Sharp, J.C.S. Dalton, 1976, 241.
${ }_{2}$ J. L. Davidson and D. W. A. Sharp, J.C.S. Dalton, 1975, 2531 ; J. L. Davidson, M. Green, D. W. A. Sharp, F. G. A. Stone, and A. J. Welch, J.C.S. Chem. Comm., 1974, 706; J. L. Davidson, M. Green, F. G. A. Stone, and A. J. Welch, J.C.S. Dalton, 1976, 738.
plex $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. We also report reactions of trimethylphosphine, triphenylphosphine, and tbutyl isocyanide with co-ordinatively unsaturated bis-(acetylene)-molybdenum and -tungsten complexes, in order to explore further the chemistry of these interesting 16 -electron molecules. Some aspects of this chemistry have been mentioned previously. ${ }^{3}$

RESULTS AND DISCUSSION

In refluxing hexane, diphenylacetylene and [Mo-$\left(\mathrm{COCF}_{3}\right)\left(\mathrm{CO}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] afford purple air-sensitive complex (1) in high yield; i.r. spectroscopy showed that the reaction involves the intermediacy of $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)(\mathrm{CO})_{3}{ }^{-}\right.$ $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] formed via the well known decarbonylation
${ }^{3}$ J. L. Davidson, M. Green, J. A. K. Howard, S. A. Mann, J. Z. Nyathi, F. G. A. Stone, and P. Woodward, J.C.S. Chem. Comm., 1975, 803.
reaction. ${ }^{4}$ Examination of the i.r. and n.m.r. (${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$) spectra showed that (1) is a 16 -electron complex similar to $\left[\mathrm{Mo}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)(\mathrm{CO})\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, a species which has been structurally characterised ${ }^{5}$ by X-ray crystallography, the metal being essentially octahedrally co-ordinated, with the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ring occupying a

face and the $\mathrm{C} \equiv \mathrm{C}$ axis of the η^{2}-co-ordinated acetylene lying parallel to the $\mathrm{Mo}^{-} \mathrm{CO}$ axis. The corresponding reaction of but-2-yne with $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ did not proceed thermally; however, u.v. irradiation gave a good yield of the very air-sensitive complex (2). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (2) showed a singlet at $\tau 4.54$ assigned to the cyclopentadienyl protons, and a singlet at $\tau 7.82$ which is assigned to the methyl protons of the but-2-yne ligand, suggesting dynamic behaviour. However, low-temperature n.m.r. measurements were frustrated by the high oxygen sensitivity of this complex.

It is interesting that attempts to convert both (l) and (2) into bis(acetylene) complexes by further reaction with $\mathrm{PhC}_{2} \mathrm{Ph}$ or $\mathrm{MeC}_{2} \mathrm{Me}$ were unsuccessful, contrasting with the corresponding reactions of the halogeno-species ${ }^{2}$ $\left[\mathrm{MX}(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$. However, u.v. irradiation of a hexane solution of $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with the electronegatively substituted acetylene $\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ afforded the bis(acetylene) complex (3).

When this reaction was monitored by i.r. spectroscopy there was no evidence for the existence of a monocarbonyl species, i.e. $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)(\mathrm{CO})\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)-\right.$ $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$]. The i.r. spectrum of (3) showed bands at 1775 and $1760 \mathrm{~cm}^{-1}$, which are assigned to $v(\mathrm{C} \equiv \mathrm{C})$, similar bands (1778 and $1762 \mathrm{~cm}^{-1}$) being observed ${ }^{2}$ in the spectrum of the tungsten complex $\left[\mathrm{WCl}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ whose structure has been confirmed by a single-crystal X-ray diffraction study. ${ }^{2}$ A related
${ }^{4}$ R. B. King and M. B. Hursthouse, J. Organometallic Chem., 1964, 2. 15.
complex (4) was obtained when the acyl complex $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ was treated with $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ in refluxing diethyl ether. A medium-strong band in the i.r. spectrum at $1760 \mathrm{~cm}^{-1}$ is assigned to $v(\mathrm{C}=\mathrm{C})$, whilst the strong band at $1715 \mathrm{~cm}^{-1}$ is assigned to the methoxycarbonyl groups of the co-ordinated acetylene.

When the monocarbonyl complex (2) was treated with $\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ in hexane solution at room temperature the yellow crystalline complex (5) was formed in quantitative yield. A band at $1780 \mathrm{~cm}^{-1}$ in the i.r. spectrum is assigned to the $v(\mathrm{C} \equiv \mathrm{C})$ stretch of co-ordinated hexa-fluorobut-2-yne, the relatively low frequency implying significant π back donation.

Thus, the reaction of $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with acetylenes bearing electronegative substituents yields products ${ }^{2}$ analogous to $\left[\operatorname{MoX}\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{X}=$ Cl, Br, or I) and $\left[\mathrm{WCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. A single-crystal X-ray diffraction study of the latter complex has shown that the metal is in an approximately octahedral environment with the $n-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand occupying three facial sites, the $\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ and Cl ligands occupying the remaining sites. It is suggested that complexes (3)-(5) are isostructural in the solid state. Examination of the ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ n.m.r. spectra shows that in solution a propeller rotation of the acetylene occurs about an axis through the metal and perpendicular to the $C \equiv C$ bond of the acetylene, as has been established ${ }^{2}$ for the related halogeno-complexes. The $C F_{3} \mathrm{C} \equiv \mathrm{C}$ resonances in the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (3) show two quartets at $-90^{\circ} \mathrm{C}$ which collapse to a broad peak at $-50^{\circ} \mathrm{C}$, above which temperature only one quartet is observed (58.2 p.p.m.). The ${ }^{1} \mathrm{H}$ spectrum of (4) consists of two singlets at $\leqslant-35{ }^{\circ} \mathrm{C}$ coalescence occurring at $-30{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ spectrum of (5) shows two methyl resonances at $-80^{\circ} \mathrm{C}$, coalescence occurring at $-60^{\circ} \mathrm{C}$ to a single resonance. The ${ }^{19} \mathrm{~F}$ spectrum of the same complex shows two $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{C}$ resonances in the range 30 to $-90^{\circ} \mathrm{C}$ demonstrating that only the but-2-yne moiety rotates; evidently the barrier to rotation for the $\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ ligand is relatively high due to significant back bonding. In the case of (3) and (4) two good back-bonding acetylenes are competing for the electron density on the metal, and hence the extent of back bonding to an individual acetylene is less than in complex (5).

The formally co-ordinatively unsaturated complex (3) reacts with trimethylphosphine at room temperature to give pink crystals of the $1: 1$ adduct (6). The i.r. spectrum of this complex has bands at 1795 and 1775 cm^{-1} attributable to $\nu(\mathrm{C} \equiv \mathrm{C})$, these being $c a .20 \mathrm{~cm}^{-1}$ higher than in the parent complex (3). This is consistent with the presence in (6) of η^{2}-bonded $\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ with reduced back bonding compared with the acetylenes in (3). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (6) shows two singlets at $\tau 4.12$ and 4.16 assigned to the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ protons and two doublets $[J(\mathrm{HP}) 13.0 \mathrm{~Hz}]$ at $\tau 8.46$ and 8.50 , which are assigned to the methyl protons of co-ordinated PMe_{3}. The two sets of resonances clearly establish the presence

[^0]in solution of two isomers in the ratio $1: 1$ (independent of the temperature range 30 to $-50{ }^{\circ} \mathrm{C}$). The ${ }^{19} \mathrm{~F}$ spectrum also shows peaks corresponding to two isomers, and it is suggested that these have structures (6a) and (6b).

Similar reactions occur on treatment of (4) with $\mathrm{PPh}_{3}, \quad\left[\mathrm{MoCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with PPh_{3} or

(a)

(b)

	M	R	L	X
(6)	Mo	CF_{3}	PMe_{3}	CF_{3}
(7)	Mo	$\mathrm{CO}_{2} \mathrm{Me}^{2}$	PPh_{3}	CF
3				

PMe_{3}, and $\left[\mathrm{WCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with PMe_{3}, giving respectively the 18 -electron species (7), (8), (9), and (10), which were isolated as crystalline $1: 1$ adducts. The i.r. spectrum of (7) has a strong band at $1675 \mathrm{~cm}^{-1}$ assignable to the ketonic carbonyls of the $\mathrm{CO}_{2} \mathrm{Me}$ group. However, no band ascribable to $v(\mathrm{C}=\mathrm{C})$ could be identified, although it is possible that there is overlap with the carbonyl band. The ${ }^{1} \mathrm{H}$ spectrum showed a broad signal at $\tau 2.6$ due to the phenyl protons of PPh_{3}, a singlet at $\tau 4.50$ assigned to the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ protons, and four singlets due to the methyl groups of the acetylenes. On cooling to $-50{ }^{\circ} \mathrm{C}$, two $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ resonances were observed in the ratio of $1: 2$ implying the presence in solution at low temperatures of two isomers, possibly (7a) and (7b). In agreement with this suggestion, it is interesting to note that intramolecular ligand rearrangement between cis and trans conformers of the general formula $\left[\operatorname{MoR}(\mathrm{CO})_{2} \mathrm{~L}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{R}=$ alkyl, aryl, halide, or hydride; $\mathrm{L}=$ tertiary phosphine) has been observed, ${ }^{6}$ the barrier to rearrangement depending on the size of the R group.

The ${ }^{19} \mathrm{~F}$ spectrum of (8) showed four multiplets of equal intensity indicating the presence of only one isomer, either (8 a) or (8 b). The i.r. spectrum showed a single $v(\mathrm{C} \equiv \mathrm{C})$ stretching mode at $1808 \mathrm{~cm}^{-1}$. In contrast, both (9) and (10) showed two $v(\mathrm{C} \equiv \mathrm{C})$ bands in their i.r. spectra, suggesting that each isomer [(a) or (b)] has only one $\nu(\mathrm{C} \equiv \mathrm{C})$ stretching mode, unlike the parent complexes where two are observed. Moreover, the ${ }^{19} \mathrm{~F}$ n.m.r. spectra of (9) and (10) were more complex than that of (8). Thus (9) showed eight CF_{3} multiplets, and (10) a spectrum with six resonances corresponding to eight CF_{3}
groups with the signals of two pairs overlapping. It is thus apparent that the isomers of (9) and (10) do not have a plane of symmetry even in the trans isomers (a), suggesting that steric crowding is sufficient to force the acetylenes to adopt asymmetric orientations with respect to each other. It is also clear that acetylene rotation does not occur in these 18 -electron species, presumably for the same reason.

The related reactions of t-butyl isocyanide were more complex. Addition of a molar equivalent of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$ to a diethyl ether solution of (3) gave pale pink crystals of a $1: 1$ adduct (11). Examination of the i.r. and ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ n.m.r. spectra showed that the adduct was isostructural with the phosphine adducts, but that only one isomer [either (lla) or (1lb)] was present in solution. A similar reaction between $\mathrm{Bu}^{t} \mathrm{NC}$ and $\left[\mathrm{WCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}-\right.$ $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] gave an analogous $1: 1$ adduct (12), which again existed in solution as one preferred isomer, the presence of four CF_{3} environments in the ${ }^{19} \mathrm{~F}$ spectrum at room temperature indicating the absence of acetylene rotation.

Treatment of either (11) or (12) with an excess of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$ led to another reaction and the formation, respectively, of the 1:2 adducts (13) and (14). The occurrence in the i.r. spectra of both complexes of bands attributable to $v(\mathrm{C}=\mathrm{N})$ suggested that an isocyanide had become involved in a novel cyclisation reaction. In order to confirm this important point a single-crystal X-ray diffraction study of (13) was undertaken.

Figure 1 displays the projection of a single molecule on to the plane defined by the co-ordinated cyclopentadienyl ring and demonstrates the atomic-numbering scheme adopted. There are two crystallographically independent molecules (A and B) in the asymmetric portion of the unit cell, the Figure representing type A. Molecule B can be constructed from Figure 1 by simply rotating the t-butyl group of the terminal isocyanide by ca. $\frac{\pi}{3}$ counter clockwise about the bond $\mathrm{N}(61)-\mathrm{C}(62)$.

With one exception [C(30)-F(302)], corresponding bond lengths (Table 1, uncorrected for thermal effects) of the independent species A and B agree to within three times the greater single error. The same relation holds for the majority of interbond angles (Table 2 and Appendix B),
${ }^{6}$ J. W. Faller, A. S. Anderson, and C. C. Chen, J. Organometallic Chem., 1969, 17, P7.
the only exceptions being some of the angles involving either fluorine atoms of the η^{4}-ligand or methyl carbons of the isocyanide functions. Both are atom types involved in relatively high thermal motion (Appendix C), and hence relatively inaccurate placements. Molecular parameters referred to in this discussion will therefore be the average of two.

Complex (13) thus crystallises as completely asymmetric, neutral, monomer molecules in one isomeric form only, and comprises an essentially seven-co-ordinate, formally $\mathrm{Mo}^{\mathrm{II}}$, metal atom bonded to: (i) a t-butyl isocyanide ligand, (ii) a trifluoromethyl group, (iii) an n cyclopentadienyl ligand, and (iv) an η^{4}-bonded substituted cyclopentadienimine function. Details of the

Figure 1 Perspective view of a single molecule of $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)\right.$ $\left.\left(\mathrm{CNBu}^{t}\right)\left\{\left(\mathrm{CF}_{3}\right)_{4} \mathrm{C}_{5} \mathrm{NBu}^{t}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (13) with the cyclopentadienyl H atoms omitted for clarity
first two bonded ligands are unexceptional. The sequence of lengths $\mathrm{Mo}^{-} \mathrm{C}(61), \mathrm{C}(61)-\mathrm{N}(61)$, and $\mathrm{N}(61)^{-}$ $\mathrm{C}(62)$ is $2.091,1.158$, and $1.47 \AA$ respectively, with nearlinear angles at N and C of 174.6 and 177.2°. The mean $\mathrm{Mo}-\mathrm{C}(11)$ distance is $2.227 \AA$ and, as expected, the three valence angles at $C(11)$ containing this vector are significantly larger than the $\mathrm{F}-\mathrm{C}(11)-\mathrm{F}$ set. The cyclopentadienyl group is planar (Table 3) and, within experimental error, a regular pentagon, although the molybdenum atom, $2.015 \AA$ above the ring, bonds unevenly to it, in projection being displaced ca. $0.12 \AA$ from its centre in a direction towards $\mathrm{C}(2)$. Thus, although the mean $\mathrm{Mo}-\mathrm{C}(1-5)$ distance ($2.343 \AA$) compares favourably with similar average separations,, ,, 8 in-
${ }^{7}$ J. L. Davidson, M. Green, F. G. A. Stone, and A. J. Welch, J.C.S. Dalton, 1977, 287.
${ }_{8}$ J. L. Davidson, M. Green, J. Z. Nyathi, C. Scott, F. G. A. Stone, A. J. Welch, and P. Woodward, J.C.S. Chem. Comm., 1976, 714.
dividual $\mathrm{Mo}^{-} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ lengths in the present complex differ by almost $0.1 \AA$.

Table 1
Interatomic distances (\AA) for complex (13) $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\left\{\left(\mathrm{CF}_{3}\right)_{4} \mathrm{C}_{5} \mathrm{NBu}^{\mathrm{t}}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$

	Molecule	
	A	B
Mo-C(1)	2.323(12)	2.320 (14)
$\mathrm{Mo}-\mathrm{C}(2)$	$2.304(17)$	$2.301(19)$
$\mathrm{Mo}-\mathrm{C}(3)$	2.330 (16)	2.328(20)
$\mathrm{Mo}-\mathrm{C}(4)$	$2.389(18)$	2.397(19)
$\mathrm{Mo}-\mathrm{C}(5)$	2.357(17)	2.383(19)
Mo-C(11)	$2.236(15)$	2.217(16)
Mo-C(21)	2.181(14)	2.223(15)
$\mathrm{Mo}-\mathrm{C}(22)$	$2.301(13)$	$2.299(14)$
Mo-C(31)	2.332(14)	2.335 (15)
$\mathrm{Mo}-\mathrm{C}(32)$	2.217(13)	2.220 (15)
$\mathrm{Mo}-\mathrm{C}(61)$	2.100 (14)	2.082(14)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.42(2)	1.40(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.41 (2)	1.43(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.39(3)	1.40(3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.41 (2)	1.38(3)
$\mathrm{C}(5)-\mathrm{C}(1)$	1.37(3)	1.42(3)
$\mathrm{C}(11)-\mathrm{F}(111)$	1.38(2)	1.35(2)
$\mathrm{C}(11)-\mathrm{F}(112)$	1.37(2)	1.38(2)
$\mathrm{C}(11)-\mathrm{F}(113)$	1.33 (2)	$1.36(2)$
$\mathrm{C}(20)-\mathrm{F}(201)$	1.30 (3)	1.30 (2)
$\mathrm{C}(20)-\mathrm{F}(202)$	1.33(2)	1.39(2)
$\mathrm{C}(20)-\mathrm{F}(203)$	$1.33(2)$	1.27(3)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.49 (2)	1.48 (2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.456(18)	$1.431(20)$
$\mathrm{C}(22)-\mathrm{C}(23)$	1.49 (2)	1.52(2)
$\mathrm{C}(23)-\mathrm{F}(231)$	1.32(2)	1.29(2)
$\mathrm{C}(23)-\mathrm{F}(232)$	$1.37(2)$	1.36(2)
$\mathrm{C}(23)-\mathrm{F}(233)$	1.33(2)	$1.35(2)$
$\mathrm{C}(30)-\mathrm{F}(301)$	$1.35(2)$	1.31(2)
$\mathrm{C}(30)-\mathrm{F}(302)$	1.32(2)	1.42(2)
$\mathrm{C}(30)-\mathrm{F}(303)$	$1.33(2)$	1.32(2)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.47(2)	1.47(2)
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.484(20)$	$1.433(22)$
$\mathrm{C}(32)-\mathrm{C}(33)$	1.50(2)	1.52(2)
$\mathrm{C}(33)-\mathrm{F}(331)$	$1.34(2)$	1.34(2)
$\mathrm{C}(33)-\mathrm{F}(332)$	1.37(2)	1.32(2)
$\mathrm{C}(33)-\mathrm{F}(333)$	1.27(2)	1.32(2)
$\mathrm{C}(21)-\mathrm{C}(32)$	1.454(19)	1.425(18)
$\mathrm{C}(51)-\mathrm{C}(22)$	1.51(2)	1.53(2)
$\mathrm{C}(51)-\mathrm{C}(31)$	$1.53(2)$	1.56(2)
$\mathrm{C}(51)-\mathrm{N}(51)$	$1.226(19)$	$1.226(19)$
$\mathrm{N}(51)-\mathrm{C}(52)$	1.47(2)	1.48(2)
$\mathrm{C}(52)-\mathrm{C}(521)$	1.54 (4)	1.54(3)
$\mathrm{C}(52)-\mathrm{C}(522)$	1.53(4)	1.52(3)
$\mathrm{C}(52)-\mathrm{C}(523)$	$1.54(5)$	1.56(4)
$\mathrm{C}(61)-\mathrm{N}(61)$	$1.159(19)$	1.156(21)
$\mathrm{N}(61)-\mathrm{C}(62)$	1.46 (2)	1.48(3)
$\mathrm{C}(62)-\mathrm{C}(621)$	1.55 (4)	1.55 (6)
$\mathrm{C}(62)-\mathrm{C}(622)$	1.49 (4)	1.53(5)
$\mathrm{C}(62)-\mathrm{C}(623)$	1.53(4)	1.50(7)

Table 2
Important interbond angles (${ }^{\circ}$) for complex (13)

	Molecule	
Atomic sequence	A	B
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	$35.8(6)$	$35.3(8)$
$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(3)$	$35.5(6)$	$35.9(7)$
$\mathrm{C}(3)-\mathrm{Mo}-\mathrm{C}(4)$	$34.1(6)$	$34.4(7)$
$\mathrm{C}(4)-\mathrm{Mo}-\mathrm{C}(5)$	$34.5(5)$	$33.6(7)$
$\mathrm{C}(5)-\mathrm{Mo}-\mathrm{C}(1)$	$33.9(6)$	$35.0(7)$
$\mathrm{C}(22)-\mathrm{Mo}-\mathrm{C}(21)$	$37.8(5)$	$36.8(5)$
$\mathrm{C}(21)-\mathrm{Mo}-\mathrm{C}(32)$	$38.6(5)$	$37.4(5)$
$\mathrm{C}(32)-\mathrm{Mo}-\mathrm{C}(31)$	$38.0(5)$	$36.6(6)$
$\mathrm{C}(51)-\mathrm{N}(51)-\mathrm{C}(52)$	$135.7(13)$	$138.4(13)$
$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(61)$	$83.6(6)$	$81.9(6)$
$\mathrm{Mo}-\mathrm{C}(61)-\mathrm{N}(61)$	$176.1(13)$	$173.1(15)$
$\mathrm{C}(61)-\mathrm{N}(61)-\mathrm{C}(62)$	$179.2(15)$	$175.2(20)$

At an angle of 40.7° to the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ring is a plane containing the metal-bonded carbon atoms of the η^{4}-cyclopentadienimine ligand, formally produced by cyclisation

Table 3
Equations of molecular planes for complex (13) and deviations (\AA) from the planes in square brackets
Plane 1A: C(1A), C(2A), C(3A), C(4A), C(5A)
$-7.432 x+12.729 y+7.964 z=2.274$
$[\mathrm{C}(1 \mathrm{~A})+0.007, \mathrm{C}(2 \mathrm{~A})+0.002, \mathrm{C}(3 \mathrm{~A})-0.010, \mathrm{C}(4 \mathrm{~A})+0.014$, $\mathrm{C}(5 \mathrm{~A})-0.013, \mathrm{Mo}(\mathrm{A})-2.014]$
Plane 2A: C $(22 \mathrm{~A}), \mathrm{C}(21 \mathrm{~A}), \mathrm{C}(32 \mathrm{~A}), \mathrm{C}(31 \mathrm{~A})$
$15.417 x-13.026 y-3.433 z=3.043$
$[\mathrm{C}(22 \mathrm{~A})+0.010, \mathrm{C}(21 \mathrm{~A})-0.016, \mathrm{C}(32 \mathrm{~A})+0.016, \mathrm{C}(31 \mathrm{~A})$ $-0.010, \mathrm{Mo}(\mathrm{A})-1.921, \mathrm{C}(51 \mathrm{~A})+0.644, \mathrm{C}(23 \mathrm{~A})+0.325$, $\mathrm{C}(20 \mathrm{~A})+0.289, \mathrm{C}(33 \mathrm{~A})+0.426, \mathrm{C}(30 \mathrm{~A})-0.071]$
Plane 1B: C(1B), C(2B), C(3B), C(4B), C(5B)

$$
9.125 x+9.101 y-7.889 z=-1.350
$$

$[\mathrm{C}(1 \mathrm{~B})+0.002, \mathrm{C}(2 \mathrm{~B})-0.003, \mathrm{C}(3 \mathrm{~B})+0.002, \mathrm{C}(4 \mathrm{~B})-0.001$,
$\mathrm{C}(5 \mathrm{~B})-0.001, \mathrm{Mo}(\mathrm{B})+2.016]$
Plane 2B: C(22B), C(21B), C(32B), C(31B)
$10.769 x+25.708 y-3.319 z=1.634$
$[\mathrm{C}(22 \mathrm{~B})+0.001, \mathrm{C}(21 \mathrm{~B})-0.001, \mathrm{C}(32 \mathrm{~B})+0.001, \mathrm{C}(31 \mathrm{~B})$ $-0.001, \mathrm{Mo}(\mathrm{B})-1.942, \mathrm{C}(51 \mathrm{~B})+0.617, \mathrm{C}(23 \mathrm{~B})+0.239$, $\mathrm{C}(20 \mathrm{~B})+0.265, \mathrm{C}(33 \mathrm{~B})+0.388, \mathrm{C}(30 \mathrm{~B})-0.094]$
Dihedral angles $\left({ }^{\circ}\right): 1 \mathrm{~A}-2 \mathrm{~A} 41.4,1 \mathrm{~B}-2 \mathrm{~B} 40.9$
Angles of fold $\left({ }^{\circ}\right)$: across $\mathrm{C}(22 \mathrm{~A}) \cdots \mathrm{C}(31 \mathrm{~A}) 39.3$, across C(22B) $\cdot \cdots$ C(31B) 36.1
of two $\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ and one $\mathrm{Bu}^{t} \mathrm{NC}$ molecules. The corresponding dihedral angle in the related complex $\left[\overline{\mathrm{Mo}} \cdot\left\{\mathrm{C}\left(\mathrm{CF}_{3}\right): \mathrm{C}_{\left(\mathrm{CF}_{3}\right) \cdot \mathrm{C}_{5}} \mathrm{H}_{5}\right\}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{2,7}$ is 47.6 ${ }^{\circ}$. In this latter molecule, $\mathrm{Mo}^{-} \mathrm{C}\left(\eta^{4}\right)$ separations fall into two distinct groups by virtue of a ' side-on ' tipping of the diene, whilst the present structure represents an
$\left[\mathrm{Mn}(\mathrm{CO})_{3}\left\{\left(\mathrm{CF}_{3}\right)_{4} \mathrm{C}_{4} \mathrm{SC}_{6} \mathrm{~F}_{5}\right\}\right]$ and $\left[\mathrm{Co}_{\{ }\left\{\left(\mathrm{CF}_{3}\right)_{4} \mathrm{C}_{4} \mathrm{PO}(\mathrm{OH})\right\}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .{ }^{8}$

Rehybridisation at atoms $\mathrm{C}(22), \mathrm{C}(21), \mathrm{C}(32)$, and $\mathrm{C}(31)$ on co-ordination to the metal results in three of the pendant CF_{3} groups $[\mathrm{C}(23), \mathrm{C}(20)$, and $\mathrm{C}(33)]$ bending out of the C_{4} plane and away from the molybdenum by an average of 12.1°. The one exception $\left[\mathrm{C}(30) \mathrm{F}_{3}\right]$ is fractionally displaced towards the metal (Table 3). This apparent anomaly is quickly rationalised by examination of intraligand non-bonded contacts (Table 4), which

Table 4
Intramolecular non-bonding contacts (\AA) for complex (13)
Molecule

$$
\begin{aligned}
& \mathrm{C}(522) * \cdots \mathrm{~F}(302) \\
& \mathrm{C}(523) \cdots \mathrm{F}(303) \\
& \mathrm{C}(522) \cdots \mathrm{F}(303) \\
& \mathrm{C}(621) \cdots \mathrm{F}(232)
\end{aligned}
$$

* The van der Waals radius of a methyl group was estimated as $2.0 \AA$.
demonstrate the close approaches of $\mathrm{C}(522)$ and $\mathrm{C}(523)$ to $\mathrm{F}(302)$ and $\mathrm{F}(303)$. The consequence of this crowding (caused by the in-plane bending, at N , of the bridging isocyanide, $\dot{\mathrm{N}}=\mathrm{C}^{-}$) is shared by that function in as much as the $\mathrm{N}(51)-\mathrm{C}(51)-\mathrm{C}(31)$ angle (144.1°) is considerably wider than $\mathrm{N}(51)-\mathrm{C}(51)-\mathrm{C}(22)\left(120.7^{\circ}\right)$.

Figure 2 The contents of the unit cell, as seen along the c axis, looking towards the origin. Only sufficient symmetry elements to complete the array are shown
'end-on' distortion such that the $\mathrm{Mo}-\mathrm{C}(22,31)$ distance (mean $2.317 \AA$) is appreciably longer than $\mathrm{Mo}-\mathrm{C}(21,32)$ (mean $2.209 \AA$). Similar division of the $\mathrm{Mo}-\mathrm{C}\left(\eta^{4}\right)$ lengths into pairs has been previously noted ${ }^{9}$ for

The crystal packing is reproduced, in c-axis projection, in Figure 2. The numbers given are the approximate

[^1]values, in hundredths, of the metal z co-ordinate. Interestingly, both molecules, as defined in Table 5, have almost exactly similar orientations with respect to the c axis. The closest $\mathrm{F} \cdots \mathrm{H}$ and $\mathrm{F} \cdots \mathrm{Me}$ intermolecular contacts are: $\mathrm{F}(112 \mathrm{~B})$ at $x, y, z, \mathrm{H}(5 \mathrm{~A})$ at $\frac{1}{2}-x, y-\frac{1}{2}$, $-z(2.36 \AA)$; and $\mathrm{F}(201 \mathrm{~B}), \mathrm{C}(523 \mathrm{~A})$ both at x, y, z $[3.17(5) \AA]$.

In solution, both (13) and (14) exist as a mixture of two isomers (a) and (b). For example, the i.r. spectrum of (13) has sharp bands at 2180 and $2170 \mathrm{~cm}^{-1}$ assignable to terminally bonded isocyanide. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows singlets at $\tau 4.26$ and 4.58 assignable to the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ protons, and singlets at $\tau 8.30,8.62,8.34$, and 8.58 to the $B u^{\mathrm{t}} \mathrm{N}$ protons. At room temperature the isomers are present in a ratio of $1: 3$, and at $-60^{\circ} \mathrm{C}, 1: 6$. The ${ }^{19} \mathrm{~F}$ spectrum also showed resonances due to two isomers, the same temperature dependence being observed as in the ${ }^{1} \mathrm{H}$ spectrum.
The formation of (13) and (14) is formally analogous
Table 5
Final atomic positional parameters $*\left(\times 10^{4}\right)\left(\mathrm{Mo}, \times 10^{5}\right)$ for complex (13)

Atom			
(i) Molecule A	x	y	z
Mo	23 394(6)	$21529(3)$	-9 314(10)
C(1)	2483 (10)	2 252(5)	$1581(12)$
$\mathrm{C}(2)$	$1767(10)$	2067 (5)	1 203(17)
$\mathrm{C}(3)$	1300 (8)	$2324(5)$	341 (17)
$\mathrm{C}(4)$	$1715(10)$	$2655(5)$	229(16)
$\mathrm{C}(5)$	$2452(9)$	2 604(6)	966(15)
$\mathbf{H}(1)$	2933	2143	2195
$\mathrm{H}(2)$	1623	1806	1490
$\mathrm{H}(3)$	765	2277	-109
H(4)	1524	2890	-287
H(5)	2881	2792	1030
C(51)	3 182(7)	$1587(4)$	$-2475(14)$
N (51)	3 253(7)	$1358(4)$	- 3 454(13)
C(52)	3446 (10)	954(5)	- 3529 (17)
C(521)	3573 (21)	896(11)	-5 151(38)
C(522)	$4239(20)$	891(10)	-2699(37)
C(523)	$2832(27)$	$689(14)$	-2991(50)
$\mathrm{C}(11)$	1436 (8)	$1757(5)$	-1922(16)
$\mathrm{F}(111)$	1 094(8)	$1537(4)$	-925(14)
$\mathrm{F}(112)$	810(7)	$1935(4)$	-2633(13)
$\mathrm{F}(113)$	$1632(6)$	$1507(3)$	-2905(12)
$\mathrm{F}(201)$	4416 (11)	$2530(6)$	-2916(20)
$\mathrm{F}(202)$	3 454(9)	2867 (5)	$-2568(16)$
$\mathrm{F}(203)$	4248 (9)	$2745(4)$	-825(16)
$\mathrm{C}(20)$	$3894(9)$	$2584(5)$	- $2022(16)$
$\mathrm{C}(21)$	$3458(8)$	$2233(4)$	-1760(13)
$\mathrm{C}(22)$	$3032(8)$	$1997(4)$	$-2855(12)$
$\mathrm{C}(23)$	2953 (10)	$2083(5)$	--4 454(17)
F(231)	2340 (7)	$1919(3)$	-5 136(12)
$\mathrm{F}(232)$	$2838(6)$	$2457(3)$	-4780(11)
$\mathrm{F}(233)$	3566 (6)	1988 (3)	$-5127(11)$
$\mathrm{F}(301)$	2908 (6)	$1429(3)$	$1572(12)$
$\mathrm{F}(302)$	3 727(7)	$1118(4)$	513(13)
$\mathrm{F}(303)$	$2554(8)$	$1084(4)$	-241(14)
$\mathrm{C}(30)$	$3101(11)$	1326 (5)	239(19)
C(31)	$3166(7)$	$1634(4)$	$-818(13)$
C(32)	3 568(7)	$1996(4)$	-462(14)
$\mathrm{C}(33)$	4176 (10)	$2078(5)$	766(17)
F (331)	4 866(7)	$2051(4)$	$251(13)$
$\mathrm{F}(332)$	4167 (7)	$1803(4)$	$1821(13)$
$\mathrm{F}(333)$	$4150(8)$	$2385(4)$	$1481(14)$
C (61)	1870 (8)	$2522(4)$	$-2570(14)$
$\mathrm{N}(6 \mathrm{I})$	$1583(7)$	$2734(4)$	- 3 418(13)
C (62)	$1228(11)$	3003 (6)	-4475(20)
$\mathrm{C}(621)$	$1908(18)$	$3231(9)$	-5016(33)
C(622)	$685(16)$	3 241(8)	-3 708(29)
C.(623)	809(20)	2766 (10)	-5 694(37)

Table 5 (Continued)

(ii) Molecule B			
Mo	16 257(7)	-7836(3)	$1327(11)$
$\mathrm{C}(1)$	1531 (12)	-737(6)	2 629(15)
C(2)	$1599(11)$	- $1120(6)$	2272 (20)
C(3)	916(13)	-1215(5)	1365 (20)
C(4)	$444(11)$	-895(6)	$1193(17)$
$\mathrm{C}(5)$	817(12)	-602(6)	$1963(16)$
H(1)	1920	-585	3248
$\mathrm{H}(2)$	2038	-1291	2590
$\mathrm{H}(3)$	794	-1469	925
$\mathrm{H}(4)$	-71	-881	617
$\mathrm{H}(5)$	617	-339	2036
$\mathrm{C}(51)$	$2922(8)$	-529(5)	-1399(13)
$\mathrm{N}(51)$	3 371(8)	-556(4)	-2 342(14)
$\mathrm{C}(52)$	4 209(10)	-588(5)	-2 430(18)
$\mathrm{C}(521)$	4322 (16)	-431(8)	- 3 953(29)
$\mathrm{C}(522)$	4718 (13)	$-394(7)$	- 1221 (23)
C(523)	4 383(17)	- 1022 (9)	-2455(30)
$\mathrm{C}(11)$	2140 (10)	-1308(4)	-662(18)
$\mathrm{F}(111)$	$2602(8)$	$-1500(4)$	348(15)
$\mathrm{F}(112)$	1 617(8)	-1582(4)	- 1161 (14)
$\mathrm{F}(113)$	2600 (8)	- $1293(4)$	-1775(14)
F (201)	1290 (9)	289 (5)	-2 245(16)
$\mathrm{F}(202)$	486(10)	-64(5)	-1478(18)
$\mathrm{F}(203)$	1 027(12)	297 (6)	-7(22)
$\mathrm{C}(20)$	1 203(11)	97(5)	- 1069 (19)
$\mathrm{C}(21)$	$1778(8)$	-207(4)	-751(13)
C(22)	2061 (8)	-459(5)	- 1794 (13)
C(23)	$1827(9)$	-479(5)	-3 426(16)
F(231)	$1959(6)$	-798(3)	-4025(11)
$\mathrm{F}(232)$	1066 (6)	-401(3)	-3 747(10)
$\mathrm{F}(233)$	2172 (6)	- 201(3)	-4 136(10)
$\mathrm{F}(301)$	$3252(6)$	$-798(3)$	2 602(11)
$\mathrm{F}(302)$	4021 (7)	-396(3)	1780 (12)
$\mathrm{F}(303)$	3876 (7)	-948(4)	808(14)
$\mathrm{C}(30)$	3466 (10)	-678(5)	1351 (18)
C(31)	$2864(9)$	-528(4)	$282(13)$
$\mathrm{C}(32)$	2 290(10)	-253(4)	541(14)
C(33)	2358 (10)	30(5)	$1789(17)$
F(331)	2 657(8)	353(4)	1340 (14)
$\mathrm{F}(332)$	2831 (7)	-84(3)	2914 (12)
$\mathrm{F}(333)$	1713 (8)	114(4)	2360 (14)
C (61)	$789(9)$	-903(5)	- $1576(16)$
$\mathrm{N}(61)$	317(9)	-1005(5)	-2 458(16)
C (62)	- 254(15)	- 1166 (8)	- 3 591(27)
$\mathrm{C}(621)$	--259(29)	-905(15)	-4950(54)
$\mathrm{C}(622)$	- $1037(22)$	- $1154(12)$	-2 964(41)
C(623)	-253(37)	$-1586(20)$	-3410(67)

*As fractional co-ordinates of the unit-cell edges.
to the production of a cyclopentadienone complex $\left[\mathrm{MoCl}(\mathrm{CO})\left\{\left(\mathrm{CF}_{3}\right)_{4} \mathrm{C}_{4} \mathrm{CO}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ in the reaction of $\left[\mathrm{MoCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with carbon monoxide. ${ }^{2}$ However, in the isocyanide reaction there was no evidence for the formation of a di-imine analogue of the duroquinone ${ }^{2}$ complex reported previously. It is clear that (11) and (12) are the precursors of (13) and (14), and a plausible reaction path is illustrated in the Scheme. This involves the initial conversion (reversible) of the coordinatively saturated bis(acetylene) complex into a molybdacyclopentadiene complex, a transformation which would require that the two η^{2}-bonded $\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ ligands have a relative cis disposition as in the (b) isomer. This would allow the co-ordination of a second molecule of isocyanide. However, a difficulty here is that the molybdenum would achieve a formally rather high co-ordination number of eight. Migration on to coordinated isocyanide, followed by reductive ($\mathrm{Mo}^{\mathrm{IV}} \longrightarrow$ $\mathrm{Mo}^{\mathrm{II}}$) carbon-carbon bond formation, would then result in the formation of the cyclopentadienimine ring. The
formation of (13) is important in that it provides an insight into the mode of formation of organic nitrogen compounds in the nickel-, palladium-, and cobalt-catalysed reactions of acetylenes with isocyanides. ${ }^{10-13}$

An attempt to extend these reactions was unsuccessful. Reaction of excess of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$ with $\left[\mathrm{MoCl}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right],{ }^{2} \quad\left[\mathrm{MoCl}\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right],{ }^{2}$ or $\left[\mathrm{WCl}\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{2}$ gave, respectively, the 18 -electron cationic complexes (15) (isolated as its $\left[\mathrm{PF}_{6}\right]^{-}$salt), (16), and (17), where clearly displacement of acetylene competes with the

(13b)

Scheme

cyclisation step. In these complexes the acetylene does not freely rotate as evidenced by the ${ }^{19} \mathrm{~F}$ n.m.r. spectra of (16) and (17), which both show two $C F_{3} \mathrm{C} \equiv \mathrm{C}$ environments at room temperature.

When (1), (2), or $\left[\mathrm{MCl}(\mathrm{CO})\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{M}=$ Mo or W) were allowed to oxidise slowly in air, either in

[^2]solution or in the solid state, yellow-green crystals of the complexes (18), (19), (20), and (21) were formed, respectively. Elemental analyses and i.r. and n.m.r. spectroscopy suggest that these complexes have the illustrated structures. For example, the i.r. spectrum of (19)

	M	L	R
(15)	Mo	X	
$\mathrm{Bu}^{\dagger} \mathrm{NC}$	Ph	PF_{6}	
(16)	Mo	$\mathrm{Bu}^{\dagger} \mathrm{NC}$	CF_{3}
Cl			
(17)	W	$\mathrm{Bu}^{\dagger} \mathrm{NC}$	CF_{3}
Cl			

shows a sharp band at $945 \mathrm{~cm}^{-1}$ assignable to $v(\mathrm{MoO})$, and a weak band at $1840 \mathrm{~cm}^{-1}$ due to a $v(\mathrm{C} \equiv \mathrm{C})$ stretching mode. The relatively high acetylenic stretch is consistent with reduced back bonding from the metal, which is in a relatively high oxidation state. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum at room temperature showed one $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ resonance and two $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}$ resonances demonstrating a rigid structure. Thus (18) and the related complexes
are isostructural with $\left[\mathrm{Mo}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right) \mathrm{O}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\right.$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, an X-ray crystallographic study ${ }^{5}$ having shown that in the latter complex the metal is octahedrally co-ordinated with the axis of the acetylenic ligand parallel to the $\mathrm{Mo}^{-} \mathrm{S}$ bond.

EXPERIMENTAL

Hydrogen-1 n.m.r. spectra were recorded on a Varian Associates HA 100 spectrometer operating at 100 MHz and are relative to $\mathrm{SiMe}_{4}(\tau 10.00)$ which was also the lock signal. Fluorine n.m.r. spectra were obtained either on the HA 100 spectrometer operating at 94.08 MHz , or on a JEOL PFT100 FT n.m.r. spectrometer using a ${ }^{2} \mathrm{H}$ lock, and are relative to $\mathrm{CCl}_{3} \mathrm{~F}$ ($0.00 \mathrm{p} . \mathrm{p} . \mathrm{m}$.). Infrared spectra were recorded on a Perkin-Elmer 457 spectrophotometer. Molecular weights were obtained from molecular ions obtained from mass spectra on an A.E.I. MS 902 mass spectrometer operating at 70 eV .* All the syntheses were carried out under an
${ }^{12}$ H. Yamazaki, K. Aoki, Y. Yamamoto, and Y. Wakatsuki, J. Amer. Chem. Soc., 1975, 97, 3546.
${ }^{13}$ Y. Suzuki and T. Takizawa, J.C.S. Chem. Comm., 1972, 837.
atmosphere of dry oxygen-free nitrogen. Starting materials were prepared by the published methods. ${ }^{2,4}$

Reactions of Tricarbonyl(η-cyclopentadienyl)(trifluoro-acetyl)molybdenum.-(a) With diphenylacetylene. A solution of $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.30 \mathrm{~g}, 0.87 \mathrm{mmol})$ and diphenylacetylene $(0.18 \mathrm{~g}, 1.0 \mathrm{mmol})$ was heated under reflux (24 h) in hexane $\left(20 \mathrm{~cm}^{3}\right)$. The purple solution was filtered while hot, the volume of the solvent reduced $\left(5 \mathrm{~cm}^{3}\right)$, and cooling afforded purple crystals of (1) ($0.30 \mathrm{~g}, 80 \%$), m.p. 108-110 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 57.6 ; H, 3.5\%; $M 436 . \quad \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{MoO}$ requires C, $57.8 ; \mathrm{H}, 3.4 \% ; M 436$), $v_{\text {max. }}$ in CHCl_{3} at $1962 \mathrm{vs} \mathrm{cm}^{-1}(\mathrm{CO})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 2.70\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and 3.92 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$).
(b) With but-2-yne. A solution of $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.52 \mathrm{~g}, 1.52 \mathrm{mmol})$ was heated under reflux $(24 \mathrm{~h})$ in hexane $\left(30 \mathrm{~cm}^{3}\right)$. The resulting solution of $\left[\mathrm{Mo}\left(\mathrm{CF}_{3}\right)(\mathrm{CO})_{3^{-}}\right.$ $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] was placed in a Carius tube (fitted with a Westef stopcock), and but-2-yne (10 mmol) condensed ($-196^{\circ} \mathrm{C}$) into the vessel. Irradiation ($48 \mathrm{~h}, 250-\mathrm{W}$ Hanovia u.v. lamp) of the tube and contents afforded a purple solution. Reduction of the volume of the solvent in vacuo gave airsensitive purple crystals of (2) $(0.24 \mathrm{~g}, 50 \%)$, m.p. $64-65{ }^{\circ} \mathrm{C}$ (decomp.) (Found: 42.8; H, 4.0\%; M 312. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{MoO}$ requires $\mathrm{C}, 42.3 ; \mathrm{H}, 3.5 \% ; M 312$), $\nu_{\text {max. }}$ in hexane at $1968 \mathrm{vs} \mathrm{cm}{ }^{-1}(\mathrm{CO})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 4.54\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $7.82(\mathrm{~s}, 6 \mathrm{H}$, $M e \mathrm{C} \equiv \mathrm{C}$). The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed a single resonance at 9.70 p.p.m. (s, $3 \mathrm{~F}, \mathrm{CF}_{3}$).
(c) With hexafluorobut-2-yne. Irradiation (48 h) of a solution of $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.37 \mathrm{~g}, 1.1 \mathrm{mmol})$ and hexafluorobut-2-yne (2 mmol) in hexane ($20 \mathrm{~cm}^{3}$) afforded yellow crystals. Recrystallisation ($-20^{\circ} \mathrm{C}$) from dichloromethane-hexane gave yellow crystals of (3) (0.30 g, 60%), m.p. $133-135^{\circ} \mathrm{C}$ (decomp.) (Found: C, $30.3 ; \mathrm{H}, 1.1$. $\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{~F}_{15}$ Mo requires $\mathrm{C}, 30.3 ; \mathrm{H}, 0.9 \%$), $\nu_{\text {max. }}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 1775 m and $1760 \mathrm{~m} \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed a resonance at $\tau 4.00\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at -6.61 (m, $3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{Mo}$) and 58.2 p.p.m. $\left[\mathrm{q}, 12 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}, J(\mathrm{FF})\right.$ 4.0 Hz ; coalescence temperature $\left.-50^{\circ} \mathrm{C}\right]$.
(d) With dimethyl acetylenedicarboxylate. A solution of $\left[\mathrm{Mo}\left(\mathrm{COCF}_{3}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.20 \mathrm{~g}, 0.85 \mathrm{mmol})$ and dimethyl acetylenedicarboxylate $\left(1 \mathrm{~cm}^{3}, 11.0 \mathrm{mmol}\right)$ in diethyl ether $\left(25 \mathrm{~cm}^{3}\right)$ was heated under reflux. After 5 d , the resulting yellow solution was filtered, the volume of the solvent reduced in vacuo, and cooling afforded yellow crystals of (4) ($0.17 \mathrm{~g}, 40 \%$), m.p. $123-125^{\circ} \mathrm{C}$ (decomp.) (Found: C, 41.9 ; $\mathrm{H}, 3.2$. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{MoO}_{8}$ requires $\mathrm{C}, 42.2 ; \mathrm{H}, 3.3 \%$), $v_{\text {max. }}$ in CHCl_{3} at $1760 \mathrm{~m}(\mathrm{C} \equiv \mathrm{C})$ and $1715 \mathrm{~s} \mathrm{~cm}{ }^{-1}(\mathrm{CO})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 4.10$ (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$) and $6.13\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{C}\right.$; coalescence temperature $-30^{\circ} \mathrm{C}$).

Reactions of Oxygen.-(a) With complex (1). Exposure of a solution of (1) in hexane to air afforded yellow-green crystals of (18) (60%), m.p. $90-91{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, $56.6 ; \mathrm{H}, 3.8 \% ; M 424 . \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{MoO}$ requires $\mathrm{C}, 56.6$; $\mathrm{H}, 3.5 \% ; M 424$), $\nu_{\text {max. }}$ in CCl_{4} at $950 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{MoO})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 2.50(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$) and $3.92\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed a single resonance at 7.9 p.p.m. (s, $3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{Mo}$).
(b) With complex (2). Similarly, oxidation of (2) gave yellow-green crystals of (19) (90\%), m.p. $75-76^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 40.4 ; \mathrm{H}, 3.9 . \quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{MoO}$ requires $\mathrm{C}, 40.0 ; \mathrm{H}, 3.7 \%$),
$\nu_{\text {max. }}$ in CCl_{4} at $945 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{MoO})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $3.92\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 7.00(\mathrm{~s}, 3 \mathrm{H}$, $M e \mathrm{C} \equiv \mathrm{C}$), and 7.44 (s, $3 \mathrm{H}, M e \mathrm{C} \equiv \mathrm{C}$). The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed a single resonance at 14.7 p.p.m. (s, 3 F , $\mathrm{CF}_{3} \mathrm{Mo}$).
(c) With Carbonylchloro $(\eta$-cyclopentadienyl)(1-2- $\eta-$ diphenylacetylene)molybdenum. A solution of [MoCl-$\left.(\mathrm{CO})\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.20 \mathrm{~g}, 0.05 \mathrm{mmol})$ in chloroform $\left(30 \mathrm{~cm}^{3}\right)$ was stirred (22 h) at room temperature in air. The reaction mixture was filtered and the solvent removed in vacuo. Recrystallisation $\left(-20^{\circ} \mathrm{C}\right)$ of the residue from diethyl ether-hexane afforded yellow crystals of (20) (0.12 g, 57%), m.p. $152-154{ }^{\circ} \mathrm{C}$ (Found: C, $57.8 ; \mathrm{H}, 3.9 \% ; M 390$. $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClMoO}$ requires $\mathrm{C}, 58.3 ; \mathrm{H}, 3.8 \% ; M 390$), $\nu_{\text {max. }}$ in Nujol at 947 m and $936 \mathrm{~m} \mathrm{~cm}{ }^{-1}(\mathrm{Mo}=\mathrm{O})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 2.45(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$) and 3.77 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$).
(d) With carbonylchloro($n-c y c l o p e n t a d i e n y l)(\mathrm{I}-2-\eta-$ diphenylacetylene)tungsten. A similar reaction of [$\mathrm{WCl}(\mathrm{CO})-$ $\left.\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ but in the solid state gave crystals (from $\mathrm{Et}_{2} \mathrm{O}$) of (21) $\left(55 \%\right.$), m.p. $154-155{ }^{\circ} \mathrm{C}$ (Found: C , 47.7; $\mathrm{H}, 3.3 \% ; M 478 . \quad \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClOW}$ requires $\mathrm{C}, 47.7 ; \mathrm{H}$, $3.2 \% ; M 478)$, $\nu_{\text {max }}$ in Nujol at $949 \mathrm{~m} \mathrm{~cm}^{-1}(\mathrm{~W}=\mathrm{O})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 2.25(\mathrm{~m}$, $\left.10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $3.33\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$.

Reaction of Complex (2) with Hexafluorobut-2-yne.-An excess of hexafluorobut-2-yne (1 mmol) was condensed into a tube containing a hexane $\left(10 \mathrm{~cm}^{3}\right)$ solution of (2) $(0.10 \mathrm{~g}$, 0.32 mmol). After 1 h at room temperature the volume was reduced in vacuo giving yellow crystals of (5) (0.14 g, 90%), m.p. $120-121{ }^{\circ} \mathrm{C}$ (Found: C, 38.0; H, 2.5. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{9} \mathrm{Mo}$ requires $\mathrm{C}, 37.7 ; \mathrm{H}, 2.5 \%)$, $\nu_{\max }$ in CCl_{4} at $1780 \mathrm{~m} \mathrm{~cm}{ }^{-1}$ ($\mathrm{C} \equiv \mathrm{C}$). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 4.26\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $7.00(\mathrm{~s}, 6 \mathrm{H}, M e \mathrm{C} \equiv \mathrm{C}$; coalescence temperature $-63{ }^{\circ} \mathrm{C}$). The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum (in CDCl_{3}, $-80^{\circ} \mathrm{C}$) showed resonances at $0.75\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{Mo}\right), 55.6$ $\left(\mathrm{m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right)$, and 55.8 p.p.m. (m, $\left.3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right)$.

Reaction of Complex (3) with Trimethylphosphine.-Trimethylphosphine $\left\{\right.$ from $\left.\left[\mathrm{AgI}\left(\mathrm{PMe}_{3}\right)\right], 0.18 \mathrm{mmol}\right\}$ was condensed into a dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ solution of (3) (0.10 $\mathrm{g}, 0.18 \mathrm{mmol})$. After 5 d at room temperature the mixture was filtered, hexane added, and cooled $\left(-20^{\circ} \mathrm{C}\right)$ to give pink round crystals of (6) (0.10 g, 90%), m.p. $164-166{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, .33 .0 ; \mathrm{H}, 2.4 \% ; M 630 . \quad \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{15} \mathrm{MoP}$ requires $\mathrm{C}, 32.4 ; \mathrm{H}, 2.2 \% ; M 630$), $\nu_{\text {max }}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at I 795 m and $1775 \mathrm{~m} \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum (in $\mathrm{CDCl}_{3},-50{ }^{\circ} \mathrm{C}$) showed resonances corresponding to two isomers $(1: 1)$ at $\tau 4.12\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.16(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 8.46[\mathrm{~d}, 9 \mathrm{H}, J(\mathrm{HP}) .13 .0]$, and $8.50[\mathrm{~d}, 9 \mathrm{H}, J(\mathrm{HP})$ 13.0 Hz]. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum (in $\mathrm{CDCl}_{3}-50{ }^{\circ} \mathrm{C}$) showed resonances at $-4.8\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{Mo}\right), 45.5(\mathrm{~m}, 3 \mathrm{~F}$, $\left.\mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 49.0\left[\mathrm{q}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}, J(\mathrm{FF}) 6.0\right], 51.8(\mathrm{~m}, 3 \mathrm{~F}$, $\left.\mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 53.5\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 55.6\left(\mathrm{~s}, 6 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 56.7$ (s, $3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}$), and 61.9 p.p.m. $\left[\mathrm{q}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}, J(\mathrm{FF})\right.$ 8.5 Hz].

Reaction of Complex (4) with Triphenylphosphine.-To complex (4) ($0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ was added triphenylphosphine ($0.10 \mathrm{~g}, 0.4 \mathrm{mmol}$) when the yellow solution immediately became purple. Addition of hexane $\left(5 \mathrm{~cm}^{3}\right)$ followed by cooling $\left(-20{ }^{\circ} \mathrm{C}\right)$ afforded purple crystals of (7) $(0.15 \mathrm{~g}, 98 \%)$, m.p. $145-146{ }^{\circ} \mathrm{C}$ (Found: C, $55.0 ; \mathrm{H}, 4.5 \% ; M 776 . \quad \mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{MoO}_{8} \mathrm{P}$ requires $\mathrm{C}, 55.7 ; \mathrm{H}, 4.1 \% ; M 776)$, $v_{\max }$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $1675 \mathrm{~s} \mathrm{~cm}{ }^{-1}(\mathrm{CO})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 2.6\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.50(\mathrm{~s}, 5 \mathrm{H}$,
$\mathrm{C}_{5} \mathrm{H}_{5}$), 6.24 (s, $3 \mathrm{H}, \mathrm{Me} \mathrm{O}_{2} \mathrm{C}$), 6.50 (s, $3 \mathrm{H}, \mathrm{MeO}_{2} \mathrm{C}$), 6.70 (s, $3 \mathrm{H}, \mathrm{MeO}_{2} \mathrm{C}$), and $7.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}_{2} \mathrm{C}\right)$.

Reaction of Complex (3) with t-Butyl Isocyanide.-(a) With equimolar amounts of reactants. To complex (3) (0.21 $\mathrm{g}, 0.4 \mathrm{mmol}$) in diethyl ether ($2 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$ ($0.032 \mathrm{~g}, 0.4 \mathrm{mmol}$) when the yellow colour changed to pink. Addition of hexane ($2 \mathrm{~cm}^{3}$) followed by cooling ($-20^{\circ} \mathrm{C}$) gave pale pink crystals of (11) $(0.23 \mathrm{~g}, 90 \%)$, m.p. $104-105$ ${ }^{\circ} \mathrm{C}$ (sublimed) (Found: C, 36.2; H, 2.2; N, 2.3. $\mathrm{C}_{19} \mathrm{H}_{14^{-}}$ $\mathrm{F}_{15} \mathrm{MoN}$ requires $\left.\mathrm{C}, 35.8 ; \mathrm{H}, 2.2 ; \mathrm{N}, 2.2 \%\right)$, $\nu_{\text {max. }}$ in CCl_{4} at $2270 \mathrm{~s}(\mathrm{NC})$ and $1800 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 3.89\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $8.28\left(\mathrm{~s}, 9 \mathrm{H}, B u^{i} \mathrm{~N}\right)$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at 5.0 [q, $\left.3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{Mo}, J(\mathrm{FF}) 6.0\right], 54.7$ ($\mathrm{m}, 6 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}$), 56.7 (br, $3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}$), and 57.2 p.p.m. $\left[\mathrm{q}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}, J(\mathrm{FF}) 3.6 \mathrm{~Hz}\right]$.
(b) With an excess of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$. Addition $\left(20^{\circ} \mathrm{C}\right)$ of an excess of $\mathrm{Bu}^{t} \mathrm{NC}\left(0.5 \mathrm{~cm}^{3}\right)$ to a solution of (3) $(0.10 \mathrm{~g}, 0.18$ mmol) in dichloromethane led to a change in colour from yellow to white. Hexane ($1 \mathrm{~cm}^{3}$) was added, the volume reduced in vacuo to $2 \mathrm{~cm}^{3}$, and the reaction mixture cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ giving off-white crystals of (13) $(0.71 \mathrm{~g}, 98 \%)$, m.p. $131.5-132{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 40.1 ; H, 3.3; F, $38.9 ; \mathrm{N}, 4.0 \%$; $M 720 . \quad \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{15} \mathrm{MoN}_{2}$ requires $\mathrm{C}, 40.0$; $\mathrm{H}, 3.2 ; \mathrm{F}, 39.6 ; \mathrm{N}, 3.9 \% ; M 720)$, $\nu_{\text {max }}$ in CCl_{4} at 2180 s , $2170 \mathrm{~s}(\mathrm{NC})$, and $1685 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances corresponding to the presence of two isomers at $\tau 4.26\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.58\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, $8.30(\mathrm{~s}), 8.34(\mathrm{~s}), 8.58(\mathrm{~s})$, and $8.62(\mathrm{~s})$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at $-7.0(\mathrm{~m}, 3 \mathrm{~F}$, $\left.\mathrm{C} F_{3} \mathrm{Mo}\right),-2.0\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{Mo}\right), 47.9\left(\mathrm{~m}, 6 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}\right), 50.9$ $\left(\mathrm{m}, 6 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}\right), 52.2\left(\mathrm{~m}, 6 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}\right.$), and 53.6 p.p.m. (m, $6 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}$).

Reactions of Chlovo(η-cyclopentadienyl)bis(2-3- η-hexa-fluorobut-2-yne)molybdenum.-(a) With triphenylphosphine. A solution of $\left[\operatorname{MoCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.20 \mathrm{~g}, 0.38$ $\mathrm{mmol})$ in dichloromethane ($15 \mathrm{~cm}^{3}$) was added to a solution of $\mathrm{PPh}_{3}(0.10 \mathrm{~g}, 0.38 \mathrm{mmol})$ in dichloromethane ($10 \mathrm{~cm}^{3}$). After I h at room temperature the volume of solvent was reduced and hexane added. The solution was cooled $\left(-20^{\circ} \mathrm{C}\right)$ giving pale yellow crystals of (8) $(0.25 \mathrm{~g}, 83 \%)$, m.p. $130-145{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 47.2; H, 2.7. $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{ClF}_{12} \mathrm{MoP}$ requires $\mathrm{C}, 47.6 ; \mathrm{H}, 2.6 \%$), $\nu_{\text {max. }}$ in Nujol at $1808 \mathrm{~m} \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 2.50\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $4.36\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at $40.3\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 50.4(\mathrm{~m}, 3 \mathrm{~F}$, $\left.\mathrm{C} F_{3} \mathrm{C}=\mathrm{C}\right), 50.7\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right)$, and 51.5 p.p.m. (m, 3 F , $\mathrm{C} \mathrm{F}_{3} \mathrm{C} \equiv \mathrm{C}$).
(b) With trimethylphosphine. Trimethylphosphine (0.03 $\mathrm{g}, 0.39 \mathrm{mmol}$) was condensed ($-196^{\circ} \mathrm{C}$) into a tube (Westef stopcock) containing a solution of $\left[\mathrm{MoCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\right.$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.13 \mathrm{~g}, 0.25 \mathrm{mmol})$ in benzene $\left(15 \mathrm{~cm}^{3}\right)$. On warming to room temperature the orange solution became pale yellow. Volatile material was removed in vacuo, and the residue recrystallised $\left(-20{ }^{\circ} \mathrm{C}\right)$ from dichloromethanehexane to give pale yellow crystals of (9) ($0.14 \mathrm{~g}, 94 \%$), m.p. $175{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 32.5 ; H, $2.5 \% ; M 596$. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClF}_{12} \mathrm{MoP}$ requires $\mathrm{C}, 32.2 ; \mathrm{H}, 2.4 \% ; M 596$), $\nu_{\text {max }}$ in Nujol at 1811 w and $1780 \mathrm{w} \mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 4.00(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), 8.15 [d, $9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{P}, J(\mathrm{HP})$ 13.6], and 8.31 [d, 9 H , $\left.\mathrm{CH}_{3} \mathrm{P}, J(\mathrm{HP}) 13.2 \mathrm{~Hz}\right]$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at $45.0\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 47.3(\mathrm{~m}, 3 \mathrm{~F}$, $\left.\mathrm{C} F_{3} \mathrm{C}=\mathrm{C}\right), 50.1\left[\mathrm{q}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}, J(\mathrm{FF}) 4.0 \mathrm{~Hz}\right], 52.8(\mathrm{~m}, 3 \mathrm{~F}$,
$\left.\mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 54.7\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}\right), 55.0\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 55.3$ (m, $3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}$), and 55.9 p.p.m. (m, $3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}$).

Reaction of Chloro(η-cyclopentadienyl)bis(2-3- η-hexa-fluorobut-2-yne)tungsten with Trimethylphasphine.-Similarly, reaction of $\left[\mathrm{WCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.15 \mathrm{~g}, 0.25$ mmol) with $\mathrm{PMe}_{3}(0.25 \mathrm{mmol})$ in benzene $\left(15 \mathrm{~cm}^{3}\right)$ gave white crystals of (10) $\left(0.12 \mathrm{~g}, 71 \%\right.$), m.p. $155{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 28.3; H, 2.1\%; M 684. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClF}_{12} \mathrm{PW}$ requires C, $28.1 ; \mathrm{H}, 2.1 \% ; M 684)$, $\nu_{\text {max }}$ in Nujol at 1785 w and $1753 \mathrm{w} \mathrm{cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 4.00\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.02(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 8.20\left[\mathrm{~d}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{P}, J(\mathrm{HP}) 13.6\right]$, and 8.36 [d, 9 H , $\mathrm{CH}_{3} \mathrm{P}, J(\mathrm{HP}) 13.0 \mathrm{~Hz}$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at $42.6\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}\right.$), 47.6 ($\mathrm{m}, 3 \mathrm{~F}$, $\left.\mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 51.6\left[\mathrm{q}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}, J(\mathrm{FF}) 4.4 \mathrm{~Hz}\right], 54.2(\mathrm{~m}$, $6 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}$), $56.0\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right)$, and 57.0 p.p.m. (m, $6 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}$).

Reactions of t-Butyl Isocyanide.-(a) With chloro(η cyclopentadienyl) bis(1-2- η-diphenylacetylene)molybdenum.
A solution of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}(0.1 \mathrm{~g}, 12.0 \mathrm{mmol})$ in dichloromethane ($5 \mathrm{~cm}^{3}$) was added dropwise at room temperature with stirring to a solution of $\left[\mathrm{MoCl}\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.1 \mathrm{~g}$, 0.18 mmol) in dichloromethane ($15 \mathrm{~cm}^{3}$). After 0.5 h the solvent was removed, and the residue dissolved in acetone $\left(20 \mathrm{~cm}^{3}\right)$. Addition of an aqueous solution of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{PF}_{6}\right]$ afforded a precipitate, which was collected. Recrystallisation $\left(-20{ }^{\circ} \mathrm{C}\right)$ from dichloromethane-hexane afforded yellow crystals of (15) $(0.05 \mathrm{~g}, 45 \%)$, m.p. $181^{\circ} \mathrm{C}$ (Found: C, $54.9 ; \mathrm{H}, 5.4 ; \mathrm{N}, 5.7 . \quad \mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~F}_{6} \mathrm{MoN}_{3} \mathrm{P}$ requires $\mathrm{C}, 55.6$; $\mathrm{H}, 5.1 ; \mathrm{N}, 5.7 \%), \nu_{\text {max. }}$ in Nujol at 2162 m and $2137 \mathrm{~m} \mathrm{~cm}^{-1}$ (NC). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 2.62-2.88\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.65\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 8.61(\mathrm{~s}$, $\left.9 \mathrm{H}, B u^{t} \mathrm{~N}\right), 8.63\left(\mathrm{~s}, 9 \mathrm{H}, B u^{i} \mathrm{~N}\right)$, and $8.91\left(\mathrm{~s}, 9 \mathrm{H}, B u^{\mathrm{N}} \mathrm{N}\right)$.
(b) With chloro(η-cyclopentadienyl)(1-2- η-diphenylacetylene) (2-3- η-hexafluorobut-2-yne)molybdenum. A solution of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}(0.10 \mathrm{~g}, 12.0 \mathrm{mmol})$ in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ was added slowly to a solution of $\left[\mathrm{MoCl}\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\right.$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.06 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$. The reaction mixture rapidly changed colour through red to yellow. Cooling ($-20^{\circ} \mathrm{C}$) afforded yellow crystals of (16) $(0.05 \mathrm{~g}$, 79%), m.p. $105-108^{\circ} \mathrm{C}$ (Found: C, 46.9; H, 5.4; F, 17.9; $\mathrm{N}, 6.6 . \quad \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{ClF}_{6} \mathrm{MoN}_{3}$ requires C, 47.4; H, 5.3; F, 18.7 ; $\mathrm{N}, 6.9 \%$), $\nu_{\text {max. }}$ in Nujol at $2195 \mathrm{~m}, 2173 \mathrm{~s}(\mathrm{NC})$, and 1804 w $\mathrm{cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$. ${ }^{\text {nax }}$ The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 4.25\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 8.33\left(\mathrm{~s}, 9 \mathrm{H}, B u^{i} \mathrm{~N}\right)$, and $8.62\left(\mathrm{~s}, 18 \mathrm{H}, B u^{i} \mathrm{~N}\right)$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at $55.0\left[\mathrm{q}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}, J(\mathrm{FF}) 3.7\right]$ and 56.1 p.p.m. [q, $\left.3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}, J(\mathrm{FF}) 3.7 \mathrm{~Hz}\right]$.
(c) With chloro(η-cyclopentadienyl)(1--2- η-diphenylacetylene) $(2-3-\eta$-hexafluorobut-2-yne)tungsten. Similarly, reaction of $\left[\mathrm{WCl}\left(\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.045$ $\mathrm{g}, 0.72 \mathrm{mmol})$ gave yellow crystals of (17) $(0.03 \mathrm{~g}, 61 \%), \mathrm{m} . \mathrm{p}$. 118-119 ${ }^{\circ} \mathrm{C}$ (Found: C, 41.1; H, 4.6; N, 6.0. $\mathrm{C}_{24} \mathrm{H}_{32}-$ $\mathrm{ClF}_{6} \mathrm{~N}_{3} \mathrm{~W}$ requires $\left.\mathrm{C}, 41.4 ; \mathrm{H}, 4.8 ; \mathrm{N}, 5.6 \%\right)$, $\nu_{\text {max }}$ in Nujol at $2193 \mathrm{~m}, 2165 \mathrm{~s}(\mathrm{NC})$, and $1773 \mathrm{w} \mathrm{cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 4.21\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, $8.23\left(\mathrm{~s}, 9 \mathrm{H}, B u^{t} \mathrm{~N}\right)$, and $8.52\left(\mathrm{~s}, 18 \mathrm{H}, B u^{t} \mathrm{~N}\right)$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at 54.7 [q, $\left.3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}, J(\mathrm{FF}) 3.7\right]$ and 56.4 p.p.m. $\left[\mathrm{q}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right.$, $J(\mathrm{FF}) 3.7 \mathrm{~Hz}\rceil$.
(d) With chloro(η-cyclopentadienyl)bis(2-3- η-hexafuoro-but-2-yne)tungsten. Addition of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}(0.034 \mathrm{~g}, 0.4 \mathrm{mmol})$ in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ to a solution of $\left[\mathrm{WCl}\left(\eta^{2}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{2}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.25 \mathrm{~g}, 0.4 \mathrm{mmol})$ in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ resulted in a colour change from yellow to colourless. The
volume of the solvent was reduced in vacuo, hexane added, and the solution cooled ($-20^{\circ} \mathrm{C}$) affording pale yellow crystals of (12) $(0.13 \mathrm{~g}, 44 \%)$, m.p. $85{ }^{\circ} \mathrm{C}$ (Found: C, 31.7 ; $\mathrm{H}, 2.1 ; \mathrm{N}, 2.0 . \mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClF}_{18} \mathrm{NW}$ requires C, 31.3; H, 2.0; $\mathrm{N}, 2.0 \%), \nu_{\max }$ in Nujol at $2260 \mathrm{~m}(\mathrm{NC})$ and $1788 \mathrm{~m} \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances at $\tau 3.8\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $8.35\left(\mathrm{~s}, 9 \mathrm{H}, B u^{\ell} \mathrm{N}\right)$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at $54.2(\mathrm{~m}$, $\left.3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C} \equiv \mathrm{C}\right), 55.5\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}\right), 55.9\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{C} F_{3} \mathrm{C}=\mathrm{C}\right)$, and 56.6 p.p.m. (m, $3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}$).

Reaction with an excess of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$ afforded, from diethyl ether-hexane, yellow crystals of (14) (36%), m.p. $90{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 35.7; H, 3.0; N, 3.5\%; M 774. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClF}_{12} \mathrm{~N}_{2} \mathrm{~W}$ requires C, 35.7; $\mathrm{H}, 3.0, \mathrm{~N}, 3.6 \% ; M 774$), ${ }^{{ }^{\text {max. }}}{ }^{\text {in }}$ Nujol at $2000 \mathrm{~m}(\mathrm{NC})$ and $1690 \mathrm{~m} \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed resonances corresponding to two isomers at $\tau 4.08\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.38(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), $8.37\left(\mathrm{~s}, B u^{i} \mathrm{~N}\right), 8.41\left(\mathrm{~s}, B u^{i} \mathrm{~N}\right), 8.48\left(\mathrm{~s}, B u^{i} \mathrm{~N}\right)$, and $8.71\left(\mathrm{~s}, B u^{i} \mathrm{~N}\right)$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in CDCl_{3} showed resonances at $48.5\left(\mathrm{~m}, \mathrm{C} F_{3} \mathrm{C}\right), 48.9\left(\mathrm{~m}, \mathrm{C} F_{3} \mathrm{C}\right), 49.5(\mathrm{~m}$, $\left.\mathrm{C} F_{3} \mathrm{C}\right), 51.2\left(\mathrm{~m}, \mathrm{C} F_{3} \mathrm{C}\right), 51.7\left(\mathrm{~m}, \mathrm{C} F_{3} \mathrm{C}\right)$, and 55.0 p.p.m. (m, $\mathrm{C} F_{3} \mathrm{C}$).

Crystal-structure Determination of Complex (13).-Crystals, as prepared above, were recrystallised from dichloro-methane-hexane. A single crystal, ca. $0.45 \times 0.45 \times 0.25$ mm with faces $100, \overline{1} \overline{1} 0, \overline{\overline{1}} 10,1 \overline{1} 0,001$, and $00 \overline{1}$ developed, was mounted on a quartz fibre with epoxy-resin adhesive. Oscillation, and zero- and first-layer equi-inclination Weissenberg photographs about a yielded the space group and cell dimensions.

The specimen was then transferred to a computercontrolled Syntex $P \mathbf{2}_{1}$ four-circle diffractometer. Setting and data collection followed the established procedure ${ }^{14}$ with the following pertinent details. In the centring program, 15 reflections, $14<2 \theta<27^{\circ}$ ($\mathrm{Mo}-K_{\alpha} X$-radiation), were taken from a $25-\mathrm{min}$ rotation photograph recorded with generator settings of $c a .50 \mathrm{kV}$ and 20 mA . For data collection: $0 \leqslant h \leqslant 25,0 \leqslant k \leqslant 50$, and $\overline{1} \overline{5} \leqslant l \leqslant 15$ (with equivalent $0 k l$ and $0 k l$ reflections subsequently merged); $2.9 \leqslant 2 \theta \leqslant 55.0^{\circ}$ (graphite-monochromated $\mathrm{Mo}-K_{\alpha}$ radiation, $\lambda_{\alpha 1}=0.70926, \lambda_{\alpha 2}=0.71354 \AA$); $\theta-2 \theta \operatorname{scan}$ in 96 steps at rates in the range $0.03367-0.48833^{\circ} \mathrm{s}^{-1}$ dependent on an initial 2 -s peak count with 200 and 2000 counts as the

[^3]threshold; four reffections were monitored once every batch of 40 (subsequent analysis ${ }^{15}$ of their net intensities as individual functions of time implied satisfactory crystal and machine stability throughout data collection); $T c a .295{ }^{\circ} \mathrm{C}$; and of 10362 independent data, 7900 had $I \geqslant 1.0 \sigma$ and were retained to solve and refine the structure.

Crystal data. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{15} \mathrm{MoN}_{2}, M=720.38$, Monoclinic, $a=17.452(6), b=35.410(18), c=9.182(4) \AA, \beta=95.51-$ $(3)^{\circ}, U=5648(4) \AA^{3}, D_{\mathrm{m}}=1.70$ (flotation), $Z=8, D_{\mathrm{c}}=$ $1.694 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2864 ; \mathrm{Mo}-K_{\alpha} X$-radiation, $\lambda=$ $0.71069 \AA, \mu\left(\mathrm{Mo}^{-} K_{\bar{\alpha}}\right)=5.9 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / a$.

Observed data were corrected for Lorentz and polarisation but not for X-ray absorption effects, and the structure was solved via a three-dimensional Patterson synthesis (Mo atoms), full-matrix (later block-diagonal) least-squares refinement, and electron-density difference syntheses (F, N, and C atoms). Cyclopentadienyl H atoms were introduced into calculated positions with $r(\mathrm{C}-\mathrm{H}) 1.00 \AA$ and $U_{\mathrm{H}} 0.076$ \AA^{2}, but were not refined. No attempt was made to locate methyl H atoms. Weights were applied according to $w=$ $(x y)^{-1}$ with $x=0.3 / \sin \theta$ if $\sin \theta<0.3, x=1$ if $\sin \theta \geqslant 0.3$, $y=F_{\mathrm{o}} / 50.0$ if $F_{\mathrm{o}}>50.0$, and $y=1$ if $F_{\mathrm{o}} \leqslant 50.0$.

In the final stages of refinement, atoms Mo, C(1)-(5), $\mathrm{C}(11), \mathrm{C}(21), \mathrm{C}(22), \mathrm{C}(32)$ and $\mathrm{C}(51)$ were allowed anisotropic thermal motion. Refinement continued until the average shift: error of refined parameters was <0.003. Residuals of $R 0.127$ and $R^{\prime} 0.159$ were obtained at a data : variable ratio of $c a .17 .1: 1$. An ultimate difference Fourier ($0.37 \AA$ resolution) maximised at $c a .0 .20,0.44,0.71$ ($c a$. $1.6 \mathrm{e}^{\AA}{ }^{-3}$).

Atomic-scattering factors for neutral atoms were taken from ref. 16 for Mo and F, ref. 17 for N and C, and ref. 18 for H with appropriate correction for anomalous dispersion. ${ }^{19}$ Table 5 lists the atomic positional parameters; structure factors (Appendix A), some bond angles (Appendix B), and the thermal parameters (Appendix C) are listed in Supplementary Publication No. SUP 22122 (39 pp.).*

We thank the I.C.I. for the award of a Fellowship (to J.L.D.), and the Commonwealth Scholarship Commission for the award of a Commonwealth Scholarship (to J.Z.N.).
[7/836 Received, 12th May, 1977]

[^4]
[^0]: 5 J. A. K. Howard, R. F. D. Stansfield, and P. Woodward, J.C.S. Dalton, 1976, 246.

[^1]: ${ }^{9}$ M. J. Barrow, J. L. Davidson, W. Harrison, D. W. A. Sharp, G. A. Sim, and F. B. Wilson, J.C.S. Chem. Comm., 1973, 583.

[^2]: $* 1 \mathrm{eV} \approx 1.60 \times 10^{-19} \mathrm{~J}$.
 ${ }^{10}$ S. Otsuka and A. Nakamura, Adv. Organometallic Chem., 1976, 14, 245.
 ${ }^{11}$ R. S. Dickson, P. J. Fraser, and B. M. Gatehouse, J.C.S. Dalton, 1972, 2278.

[^3]: * For details see Notices to Authors No. 7, J.C.S. Dalton, 1976, Index issue.

 14 A. G. Modinos and P. Woodward, J.C.S. Dalton, 1974, 2065.
 15 A. G. Modinos, 'DRSYN,' a Fortran program for data analysis.

[^4]: ${ }^{16}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 ${ }^{17}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
 ${ }_{18}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
 is ' International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

